Lipid and citric acid production by wild yeasts grown in glycerol.

نویسندگان

  • Karla Silva Teixeira Souza
  • Rosane Freitas Schwan
  • Disney Ribeiro Dias
چکیده

In this study, crude glycerol was used as a carbon source in the cultivation of wild yeasts, aiming for the production of microbial lipids and citric acid. Forty yeasts of different sources were tested concerning their growth in crude and commercial glycerol. Four yeasts (Lidnera saturnus UFLA CES-Y677, Yarrowia lipolytica UFLA CM-Y9.4, Rhodotorula glutinis NCYC 2439, and Cryptococcus curvatus NCYC 476) were then selected owing to their ability to grow in pure (OD600 2.133, 1.633, 2.055, and 2.049, respectively) and crude (OD600 2.354, 1.753, 2.316, and 2.281, respectively) glycerol (10%, 20%, and 30%). Y. lipolytica UFLA CM-Y9.4 was selected for its ability to maintain cell viability in concentrations of 30% of crude glycerol, and high glycerol intake (18.907 g/l). This yeast was submitted to lipid production in 30 g/l of crude glycerol, and therefore obtained 63.4% of microbial lipids. In the fatty acid profile, there was a predominance of stearic (C18:0) and palmitic (C16:0) acids in the concentrations of 87.64% and 74.67%, respectively. We also performed optimization of the parameters for the production of citric acid, which yielded a production of 0.19 g/l of citric acid in optimum conditions (38.4 g/l of crude glycerol, agitation of 184 rpm, and temperature of 30°C). Yarrowia lipolytica UFLA CM-Y9.4 presented good lipid production when in the concentration of 30 g/l of glycerol. These data may be used for production in large quantities for the application of industrial biodiesel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crude glycerol as substrate for oleaginous yeasts 作为含油酵母基板的粗甘油

Diverse oleaginous yeasts can grow and accumulate lipid on a broad range of competitive substrates. In this study crude glycerol from conventional biodiesel production was used as the substrate for lipid production via oleaginous yeasts. Various cultivation conditions were tested – different C/N ratios, temperatures and addition of salts. Candida lipolytica, Yarrowia lipolytica, Trichosporon fe...

متن کامل

Citric Acid Production by Yeast Grown on Glycerol-Containing Waste from Biodiesel Industry

The possibility of using glycerol and glycerol-containing waste from biodiesel manufacture as a carbon and energy source for microbiological production of citric acid has been studied. Acid formation on the selective media had previously been tested in 66 yeast strains of different genera (Candida, Pichia, Saccharomyces, Torulopsis and Yarrowia). Under growth limitation by nitrogen, 41 strains ...

متن کامل

A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol

BACKGROUND Increasing interest of non-conventional yeasts has been observed for many years due to their biochemical characteristics and potential applications. Well-studied, oleaginous yeast Y. lipolytica is an attractive host for converting a low-cost glycerol, into value-added products such as erythritol (sweetener) or citric acid. Glycerol is an important renewable feedstock and is the main ...

متن کامل

The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans.

Candida albicans produces and accumulates large amounts of the polyols d-arabitol and glycerol in culture, and/or in infected mammalian tissues. However, the effects of environmental stresses on production and accumulation of these polyols, and the means by which polyol production and accumulation are regulated have not been studied. C. albicans grown in glucose at 30 degrees C (i) produced max...

متن کامل

Engineering Yarrowia lipolytica for Enhanced Production of Lipid and Citric Acid

Increasing demand for plant oil for food, feed, and fuel production has led to food-fuel competition, higher plant lipid cost, and more need for agricultural land. On the other hand, the growing global production of biodiesel has increased the production of glycerol as a by-product. Efficient utilization of this by-product can reduce biodiesel production costs. We engineered Yarrowia lipolytica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of microbiology and biotechnology

دوره 24 4  شماره 

صفحات  -

تاریخ انتشار 2014